The influence of non-imaging detector design on heralded ghost-imaging and ghost-diffraction examined using a triggered ICCD camera.
نویسندگان
چکیده
Ghost imaging and ghost diffraction can be realized by using the spatial correlations between signal and idler photons produced by spontaneous parametric down-conversion. If an object is placed in the signal (idler) path, the spatial correlations between the transmitted photons as measured by a single, non-imaging, "bucket" detector and a scanning detector placed in the idler (signal) path can reveal either the image or diffraction pattern of the object, whereas neither detector signal on its own can. The details of the bucket detector, such as its collection area and numerical aperture, set the number of transverse modes supported by the system. For ghost imaging these details are less important, affecting mostly the sampling time required to produce the image. For ghost diffraction, however, the bucket detector must be filtered to a single, spatially coherent mode. We examine this difference in behavour by using either a multi-mode or single-mode fibre to define the detection aperture. Furthermore, instead of a scanning detector we use a heralded camera so that the image or diffraction pattern produced can be measured across the full field of view. The importance of a single mode detection in the observation of ghost diffraction is equivalent to the need within a classical diffraction experiment to illuminate the aperture with a spatially coherent mode.
منابع مشابه
Imaging around corners with single-pixel detector by computational ghost imaging
Bin Bai, Jianbin Liu, Yu Zhou, Songlin Zhang, Yuchen He, and Zhuo Xu Abstract We have designed a single-pixel camera with imaging around corners based on computational ghost imaging. It can obtain the image of an object when the camera cannot look at the object directly. Our imaging system explores the fact that a bucket detector in a ghost imaging setup has no spatial resolution capability. A ...
متن کاملThe Physics of Turbulence-Free Ghost Imaging
Since its first experimental demonstration, ghost imaging has attracted a great deal of attention due to interests in its fundamental nature and its potential applications. In terms of applications, the most interesting and useful feature, perhaps, is the turbulence insensitivity of thermal light ghost imaging, i.e., atmospheric turbulence would not have any influence on the ghost images of sun...
متن کاملTemporal ghost imaging with pseudo-thermal speckle light
We report ghost imaging of a single non-reproducible temporal signal with kHz resolution by using pseudo-thermal speckle light patterns and a single detector array with a million of pixels working without any temporal resolution. A set of speckle patterns is generated deterministically at a sampling rate of tens kHz, multiplied by the temporal signal and time integrated in a single shot by the ...
متن کاملEPR-based ghost imaging using a single-photon- sensitive camera
Correlated photon imaging, popularly known as ghost imaging, is a technique whereby an image is formed from light that has never interacted with the object. In ghost imaging experiments, two correlated light fields are produced. One of these fields illuminates the object, and the other field is measured by a spatially resolving detector. In the quantum regime, these correlated light fields are ...
متن کاملThe Physics of Ghost imaging
One of the most surprising consequences of quantum mechanics is the nonlocal correlation of a multi-particle system observable in joint-detection of distant particle-detectors. Ghost imaging is one of such phenomena. Taking a photograph of an object, traditionally, we need to face a camera to the object. But with ghost imaging, we can image the object by pointing a CCD camera towards the light ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics express
دوره 21 25 شماره
صفحات -
تاریخ انتشار 2013